1,094 research outputs found

    Portable dynamic fundus instrument

    Get PDF
    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data

    An economic analysis of grid-connected residential solar photovoltaic power systems

    Get PDF
    Prepared for the United States Dept. of Energy under Contract no. EX-76-A-01-2295, Task order 37.The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between having a photovoltaic system and not having a system. To accomplish this, a uniform methodology is defined to determine the value to the user-owner of weather-dependent electric generation technologies. Two models are implemented for three regions of the United States, the first of which is a previously developed simulation of a photovoltaic residence. The second is an economic valuation model which is required to translate the ouputs from the simulation into breakeven array prices. Special care is taken to specify the input assumptions used in the models. The accompanying analysis includes a method for analyzing the year-to-year variation in hourly solar radiation data and a discussion of the appropriate discount rate to apply to homeowner investments in photovoltaic systems. The results of this study indicate that for the regions characterized by Boston, Omaha, and Phoenix, under the assumptions noted, photovoltaic module breakeven costs for the residential application are in the range of .68,.68, .43 and $1.27 per peak system watt respectively (.42, .24, .89 per peak module watt)

    The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    Get PDF
    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry

    Pliocene Molluscs and Fishes from Northeastern California and Northwestern Nevada

    Full text link
    339-413http://deepblue.lib.umich.edu/bitstream/2027.42/48508/2/ID359.pd

    Functional Determinants in Quantum Field Theory

    Full text link
    Functional determinants of differential operators play a prominent role in theoretical and mathematical physics, and in particular in quantum field theory. They are, however, difficult to compute in non-trivial cases. For one dimensional problems, a classical result of Gel'fand and Yaglom dramatically simplifies the problem so that the functional determinant can be computed without computing the spectrum of eigenvalues. Here I report recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators), with applications in quantum field theory.Comment: Plenary talk at QTS5 (Quantum Theory and Symmetries); 16 pp, 2 fig

    Functional determinants for radial operators

    Get PDF
    We derive simple new expressions, in various dimensions, for the functional determinant of a radially separable partial differential operator, thereby generalizing the one-dimensional result of Gel'fand and Yaglom to higher dimensions. We use the zeta function formalism, and the results agree with what one would obtain using the angular momentum cutoff method based on radial WKB. The final expression is numerically equal to an alternative expression derived in a Feynman diagrammatic approach, but is considerably simpler.Comment: 21 pages, uses axodraw.st

    Simplified Vacuum Energy Expressions for Radial Backgrounds and Domain Walls

    Full text link
    We extend our previous results of simplified expressions for functional determinants for radial Schr\"odinger operators to the computation of vacuum energy, or mass corrections, for static but spatially radial backgrounds, and for domain wall configurations. Our method is based on the zeta function approach to the Gel'fand-Yaglom theorem, suitably extended to higher dimensional systems on separable manifolds. We find new expressions that are easy to implement numerically, for both zero and nonzero temperature.Comment: 30 page

    An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors.

    Get PDF
    To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers
    corecore